
Dynamic Finetuning Of Multi-Task Multi-Modal Models: A Case Study On
Comic Mischief Detection

Cullen Anderson
University Of Massachusetts Amherst

cyanderson@umass.edu

Sukruth Rao
Michigan State University
sukruth.j.rao@gmail.com

Abstract
Multitask Multimodal Models have seen signif-
icant advancement in recent years. However,
there are many challenges in effectively train-
ing a multitask model and a variety of dynamic
training methods to address these issues. It
is not always clear which method is superior
or why performance differences arise between
multitask models and their single task counter-
parts. We focus on the problem of applying
dynamic training methods to finetuning mul-
timodal multitask models. In particular, we
finetune a SOTA pretrained multimodal model,
HICCAP, on the task of Comic Mischief De-
tection. We survey existing dynamic training
methods for multitask learning and present two
simple extensions of methods, based on dy-
namic loss reweighting and curriculum learn-
ing, that achieve SOTA performance on Comic
Mischief Detection.

1 Introduction

There has been a proliferation of excitement in mul-
timodal learning and multitask learning in recent
years. Both areas enable the leveraging of more
information within data and are crucial for solving
nuanced problems and for building more general
purpose AI agents. Many key challenges remain
within both fields. While multitask learning has
been shown to yield performance benefits with im-
proved data efficiency, it can also sometimes lead
to worse performance. To yield improved perfor-
mance with curriculum learning, it is crucial to
employ dynamic training strategies. Such meth-
ods dynamically control the training process by
overseeing how data is sampled or by reweighting
loss functions. These methods are especially im-
portant within multitask learning, where they help
to facilitate even training across all tasks.

Despite the growing amount of literature in
dynamic training strategies, they have not yet
been widely adopted in practice beyond naive ap-
proaches. We aim to bridge this gap by examining a

variety of dynamic training methods on the finetun-
ing of multimodal multitask models. In particular,
we study the problem of Comic Mischief Detec-
tion and evaluate different methods over the SOTA
model for this task, HICCAP.

Structure We begin by introducing the problem
of Comic Mischief Detection, the dataset, and the
HICCAP model in Section 2. We additionally mo-
tivate our study based on the performance of the
current SOTA model on this problem. We breifly
discuss multitask learning in Section 3 detail sev-
eral dynamic training methods in Section 4, giving
the reader necessary background knowledge and
intuitions on the nuances of multitask learning. We
evaluate these methods on the Comic Mischief De-
tection dataset in Section 6. We explain avenues
of future work in Section 8. We include additional
experiments and plots in Appendix A and B.

2 Comic Mischief Detection

Certain forms of online media have been linked to
numerous negative effects in children. As a result,
detecting questionable content in online media is
an important goal that can be supported by AI. De-
tecting comic mischief, which includes violence,
adult content, slapstick, or sarcasm with humor, is
an important subcategory of this problem. Such
content is difficult to detect as it requires the cap-
turing of subtle details across modalities. Recently,
(Baharlouei et al., 2024) developed both a novel
dataset and a multimodal, multitask model for this
problem which achieves SOTA results.

2.1 Dataset

(Baharlouei et al., 2024) introduced a novel dataset
for Comic Mischief Detection. Comic Mischief
is divided into four labels corresponding to gory
humor, slapstick humor, mature humor, and sar-
casm. Data is gathered from YouTube and con-
sists of three modalities: dialogue (transcription



Figure 1: Comic Mischief Dataset Examples

of spoken dialogue), sound, and video. In total,
the dataset consists of 4,478 60 second clips from
1,179 videos. Figure 1 displays examples of im-
ages from the dataset belonging to each category
of comic mischief.

2.2 HICCAP Model

Figure 2: HICCAP Model Architecture

The "HIerarchical Cross-Attention model with
CAptions" (HICCAP) is a multimodal model used
to detect comic mischief in online videos. For ease
of reference, we display the model architecture in
Figure 2. It uses a pretrained BERT model to en-
code text (Devlin et al., 2019), a pretrained VGGish
model to encode audio (Hershey et al., 2017), and a
pretrained I3D model to encode video (Carreira and
Zisserman, 2018). Each encoding is then further
processed by RNNs and Fully Connected layers.
Crucially, the embedding for each modality is fur-
ther processed in the Hierarchical Cross Attention
(HCA) modules to enhance the representation of
all the modalities by capturing dependencies across
all modalities. Finally, the embeddings for each
modality are concatenated and passed on to task-
specific output heads.

HICCAP was pretrained using a hybrid approach
that combines matching tasks and contrastive learn-
ing methods. This combined pretraining frame-
work unifies the various modalities into a single

representation space, allowing the model to under-
stand and capture the complex relationships be-
tween video, audio, and text. Finally, the model
is fine-tuned for comic mischief detection, with
task specific heads for all four labels - gory humor,
slapstick humor, mature humor, and sarcasm. The
original paper also trains a single task classifica-
tion model, that detects whether or not a piece of
content has comic mischief in it.

2.3 Motivation

Figure 3: HICCAP Model Original Results

While (Baharlouei et al., 2024) achieved SOTA
results and demonstrated improved performance of
multi-task learning over single-task and multi-label
models, notable questions remain. We report the
performance of HICCAP given in the original pa-
per on Comic Mischief Detection over single task
and multi task models in Figure 3. While Macro
F1-Score improves through multi-task learning, in-
dividual performance changes vary significantly.
The F1-Score for slapstick humor sees a whopping
18.54% gain. Meanwhile, sarcasm sees a marginal
0.51% gain while both mature humor and gory
humor degrade in performance, with 2.61% and
7.86% drops respectively. This suggests that cer-
tain tasks train better alongside others, while others
train better alone. This is a common issue within
multi-task learning. We aim to investigate why this
issue occurs and whether performance can be im-
proved through the utilization of different training
methods tailored to multi-task learning. In addi-
tion to evaluating the problem of comic mischief
detection we hope to shed light on the general appli-
cability of dynamic training methods to finetuning
multitask multimodal models.

3 Multi Task Learning

Multitask learning (MTL) is a subfield of machine
learning in which a shared model learns multiple
tasks simultaneously. This has been shown to be
capable of yielding improved performance over sin-
gle task models (Lu et al., 2020) through improved



data efficiency, reduced overfitting through shared
representations, and fast learning by leveraging
auxiliary information. Despite these potential bene-
fits, employing multitask learning is non trivial, and
can often degrade performance. For a more com-
prehensive survey see recent surveys (Crawshaw,
2020; Yu et al., 2024).

4 Dynamic Training Methods

There are several methods to train multitask mod-
els which we call dynamic training methods. Some
of these methods are unique to multitask learning,
while others emerged in the past and have since
been generalized to multitask learning. We classify
and provide overviews of several methods here,
detailing naive approaches, their flaws, and how
modern approaches improve upon them. We eval-
uate these methods on the finetuning of HICCAP
over the comic mischief detection dataset. Due to
time constraints, we did not evaluate all methods,
and make special note of the methods which we do
not implement.

4.1 One Task At A Time

Some dynamic training methods only ever train on
one task at a time. In other words, they only ever
backpropogate on the loss function for one task
a time. Different methods control how tasks are
iterated through.

Never Look Back Training Naively, train each
task until convergence before moving on to the next
task. Continue until all tasks have been covered.
This additionally requires that the order of tasks
be specified beforehand, which may lead to differ-
ences in performance. This naive method illustrates
a key issue to multitask learning: catastrophic for-
getting. After training on later tasks, the model is
likely to diverge on earlier tasks and attain much
worse performance despite converging earlier.

Round Robin Training Cycle through tasks in
a specified interval and ordering. This naive ap-
proach combats the catastrophic forgetting issue by
ensuring that the model never stops seeing training
data from any task. However, this approach induces
overfitting on easier tasks. It is likely for there to be
easier tasks that train faster, meaning that they will
continue to train despite having already converged
while harder tasks are still training.

Dynamic Stop And Go (Lu et al., 2020)

Cycle through tasks, but dynamically assign
each task a “stop” and “go” mode. When a task
is in “go” mode, it is not converged and will con-
tinue to train. When a task is in “stop” mode, it
is converged and will not train to reduce overfit-
ting. If a task diverges while in “stop” mode, return
the task to “go” mode and return to training. This
method addresses both issues in the previous two
naive methods.

Curriculum and Anti-Curriculum Learning
Assign an ordering of difficulties to tasks and train
from easiest to hardest. To prevent catastrophic for-
getting, we start with a subset of easier tasks and
gradually add harder tasks to it. Anti-curriculum
learning does exactly the opposite of this, training
from hardest to easiest. As described in (Wang
et al., 2021), curriculum learning methods involve
a difficulty measurer, which ranks the data by diffi-
culty, and a training scheduler, which utilizes this
difficulty ranking to control how data is fed into
the model during the training process. This very
general framework was introduced in (Bengio et al.,
2009) and has seen significant improvement and
adaptations. For surveys on this field see (Wang
et al., 2021; Soviany et al., 2022). In its broadest
sense, all methods described in this section operate
in the spirit of curriculum learning. However, we
restrict the terminology curriculum learning here
to refer only to this more narrow definition.

Difficulty Based Drawing Probabilistically draw
training batches based on task difficulty. Task diffi-
culty is difficult to define and calculate in general,
and heuristics such as data size and expert knowl-
edge are often employed in practice (Hu and Singh,
2021). This broad framework may motivate many
other approaches. We do not evaluate this method.

4.2 All Tasks At Once
Alternatively, we can train all tasks simultaneously
within a single training batch. To achieve this,
we define a new loss function as the (possibly
weighted) sum of task specific loss functions. That
is, for task specific loss functions, Li, and cor-
responding weights, wi, we define the new loss
function as L =

∑
I wiLi. This is prone to two

significant issues which help illustrate the difficulty
of multi task learning in general. First, loss func-
tions may lay on different scales, causing tasks
with larger losses to overwhelm the training pro-
cess compared to tasks with smaller losses. Second,
gradients may point in different directions. As a re-



sult, minimizing the loss on one task may increase
the loss on other tasks. Although taking the sum
of task specific loss functions attempts to average
out these effects, there may still be destructive in-
terference, especially when losses lay on different
scales. A naive solution to these issues is to treat
the task losses as hyperparamaters, although the
methodology of doing this isn’t always clear. The
original HICCAP model was trained through this
process using manually tuned weights.

To combat the previously discussed issues, there
are several methods that work by manipulating
losses and gradients. We consider these as dynamic
training methods because, in effect, they control
the scheduling of tasks, as described in (Crawshaw,
2020). We also consider dynamic difficulty sam-
pling alongside these loss reweighting methods.

Gradnorm (Chen et al., 2018)
Gradnorm sets loss weights as learnable parame-

ters with a separate optimization objective. This ob-
jective aims to place gradients on a common scale
and to dynamically adjust gradient norms so differ-
ent tasks learn at a similar rate. Loss weights can
either be dynamically adjusted throughout training,
or learned ahead of time through an initial train-
ing run. We implement the first strategy, which is
slightly more competitive with significantly less
time cost.

PCGrad and Uncertainty Weighting (Yu et al.,
2020; Kendall et al., 2018)

There are several other methods in this spirit.
Notably, PCGrad (Yu et al., 2020) directly manipu-
lates gradients to point in a similar direction. Much
of our exposition on the intuitive foundation be-
hind all tasks at once based training methods come
from this work’s analysis. There are several other
methods in this spirit. An earlier work (Kendall
et al., 2018) shows the importance of task specific
weighting and proposed one of the first methods
in this line, called Uncertainty Weighting, which
considers the uncertainty between tasks.

Inverse Loss Task Sampling (Piergiovanni et al.,
2023) Control the portion that each task makes up
of each batch through a difficulty metric. Specif-
ically, have each task make up Li

L of each batch
where L and Li are training losses updated every
k iterations. We note that this is a general strat-
egy that can be adapted to different difficulty met-
rics. Additionally, it may be combined with loss
reweighting methods.

4.3 Defining Task Groupings

One area of multitask learning focuses on analyzing
which tasks to train together. Rather than needing
to employ dynamic training methods to train tasks
together and to resolve conflicts between them,
these methods area determine which tasks train to-
gether best. A naive approach is to choose tasks to
maximize cosine similarity between pairs of gradi-
ents between tasks. More sophisticated approaches
have been devised to improve upon this baseline
both in performance and time complexity. Recently,
Fifty et al. 2021 devised a method that groups tasks
based on pairwise inter-task affinity scores, which
intuitively capture the effect of one tasks’s gradient
on another’s. Prior to this Standley et al. 2020, ap-
proximates task groupings based on pair-wise task
performance. Task grouping methods are comple-
mentary with loss reweighting based methods and
future work is needed to integrate them. We do not
evaluate these methods but note that this area is
especially helpful when selecting auxiliary tasks to
benefit performance across the main tasks.

4.4 Novel Methods

Inverse Loss Task Weights This method pro-
vides a novel way to weight task specific losses.
Inspired by the batch sampling based approach
in (Piergiovanni et al., 2023), we utilize the same
loss ratio to weight the loss for each task, rather
than to weight the proportion of each task within
a batch. Define task weights, wi =

Li
L . As train-

ing progresses, continue to adjust these weights
accordingly. Tasks with higher losses are assigned
more weight, directing the model to focus more on
improving those tasks. This dynamic adjustment
ensures that the model does not neglect any task
and continuously strives to balance performance
across all tasks.

Dynamic Curriculum Learning We define a
simple difficulty measurer and training scheduler
for curriculum learning. The algorithm starts with
an assessment phase followed by a training phase.
In the assessment phase, the curriculum is dynam-
ically determined based on the difficulty of each
task. In this phase, the model trains all downstream
tasks for a fixed number of epochs, while collect-
ing performance data. At the end of this phase an
assessment is made based on the F1-Scores of the
tasks. The curriculum is prepared with easier tasks
coming first and more difficult tasks gradually get-
ting incorporated. Next, each of these tasks are



assigned a fixed number of epochs for training. It
is important to note that as new tasks are added for
training, the previously included tasks are allowed
to continue training. The net result is that the final
part of training ends up including all the tasks. Dur-
ing training, when multiple tasks are involved, the
combined loss is determined by assigning a weight
to each task. We determine these weights using the
inverse loss task weights previously discussed.

Dynamic Anti-Curriculum Learning Dynamic
Anti-Curriculum Learning is identical to the pre-
viously described Dynamic Curriculum Learning
with the exception of the order of tasks in the Cur-
riculum. In this strategy the difficult tasks are
trained before the easier ones.

5 Implementation

The previous implementation (RiTUAL-UH, 2024)
of HICCAP architecture (Baharlouei et al., 2024)
maintained independent code bases for binary and
multi tasks. This meant the training, evaluation,
and testing had to be done separately consuming
excessive computational time and resources. Fur-
ther all parts of the HICCAP architecture were
tightly coupled resulting in a monolithic software.
This posed significant problems when adding a new
fine-tuning strategy as this required changing the
heart of training and evaluation code. Our goal
was to experiment with a number of fine-tuning
strategies at short notice. This called for rapid turn
around for the development and experimentation of
the code. To achieve this, we redesigned the soft-
ware architecture from scratch. The new software
architecture mirrors the original HICCAP model
completely in implementation. The salient features
of the new architecture are:

• Modularized software components with well
defined interfaces

• Simultaneous training, evaluation, and testing
for all downstream tasks

• Pluggable fine-tuning strategies

The following software components are de-
signed as Pytorch Neural Network modules with
well defined interfaces to interconnect them:

• Feature Encoding
• Hierarchical Cross Attention
• Binary Tasks
• Multi Tasks

The modularized approach helped in putting to-
gether a combined model covering all the down-

stream tasks. The resulting structure allowed for
simultaneous training, evaluation, and testing of
all tasks in a single pass. A number of fine-tuning
strategies are implemented using the interfaces of-
fered by the software architecture. These interfaces
are:

• start_epoch(): Invoked every time a new
epoch is started.

• end_epoch(): Invoked at the end of each
epoch.

• start_batch_iter(): Invoked at the beginning
of a batch.

• end_batch_iter(): Invoked at the end of a
batch.

• process_eval(): Invoked to process the evalu-
ation results after each epoch.

• backward(): Entry point for backpropaga-
tion.

• process_batch_eval(): Invoked to process the
results of evaluation within an epoch if per-
formed. This is applicable to only certain
fine-tuning strategies.

• get_batch_eval_iter_count(): Indicates the
number of batches after which an evaluation
must be performed. This is applicable to only
certain fine-tuning strategies.

The above interfaces allowed for a number of
fine-tuning strategies to be integrated seamlessly
without changing the mainline code for training,
evaluation, and testing.

6 Experiments

We evaluate dynamic training methods over finetun-
ing the HICCAP model. In Table 1 we include final
testing results over several methods. The Binary
Task Model (BTM) column contains F1-Scores
over a single task binary model. The Multi Task
Model (MTM) column contains Macro F1-Scores
for each strategy trained over all tasks. We addition-
ally report task specific validation F1-Score histo-
ries. We employ the same experimental conditions
as the original paper: a batch size of 16; an AdamW
optimizer with a weight decay of 0.02, betas set
at the default values of (0.9, 0.999), and eps at 1e-
8; and PyTorch’s adaptive learning rate scheduler
which takes in validation Macro F1-Score, adjusts



Table 1: Results of Fine-Tuning Strategies

the learning rate by a factor of 0.5, and maintains
a minimum learning rate of 1e-8. We note that
because each data item has labels for every task,
whenever we accumulate losses we utilize every
label for each piece of data.

We first replicate the original paper’s results over
a multitask model and a naive finetuning strategy.
The original paper trains tasks all at once and as-
signs fixed task-specific loss weights learned ahead
of time. We treat these results as our baseline and
report them in Figure 4. For the binary task the
F1-Score was 73.38 and the average F1-Score for
multi tasks was 69.34. These scores are marginally
different from the ones reported in the paper.

We evaluate Round Robin Training, where we
switch tasks at every batch. In the Per-Batch Round
Robin strategy, the backpropagation for the binary
task is always performed whereas the backpropaga-
tions for multi tasks are performed in a round robin
manner. This gave the binary tasks an adequate
chance for learning. This is reflected in a high F1-
Score of 79.27 for the binary task. Since only one
of the multi-tasks are selected for backpropagation
for each batch, it may have led to inadequate learn-
ing which is showcased in a moderate F1-Score of
66.13. We note that, perhaps surprisingly, Round
Robin Training is competitive with all other meth-
ods.

In the Dynamic Stop-and-Go strategy, all tasks
are started in “GO” mode during training and the
training continues normally. After a fixed num-
ber of batches (16 batches in our experiment), an
evaluation is performed. If the current loss for a
task exceeds the minimum of the last two recorded
losses by more than 0.1%, the task is marked “con-
verged”, and its mode is switched to “STOP”. If
a task is in “STOP” mode and the current loss sur-
passes the best recorded loss by at least 0.5%, the
task is marked “diverged”, and its mode is switched

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 4: Fixed Weights F1-Scores

back to “GO”. While in “STOP” mode, the back-
propagation for a task is performed only at a fixed
interval of batch iterations (8 in our experiment).
For the binary task the F1-Score was 74.33 and
the average F1-Score for multi tasks was 67.95.
While this strategy can improve performance of
tasks prone to overfitting, it might interrupt the
learning process for tasks that could benefit from
continued training.

In Naive Curriculum Learning, the algorithm
starts by training on the ’Binary’ task first. Sub-
sequently more complex tasks like ’Gory,’ ’Sar-
casm,’, ’Slapstick’, and ’Mature’ are introduced
in stages. For the binary task the F1-Score was
77.18 and the average F1-Score for multi tasks was
61.43. Anti-Curriculum Learning starts by training
on the "Mature" task followed by "Slapstick", "Sar-
casm", "Gory", and "Binary" tasks in that order. In
this case, the F1-Score obtained for the binary task
was 76.36 and the average F1-Score obtained for
multi tasks was 61.86. Curriculum Learning and
Anti-Curriculum Learning produced the two lowest
multi-task scores, possibly due to their rigid task
introduction sequences. The fixed arrangement of
tasks may have led to overfitting on simpler tasks,
making it harder for the model to adapt to more



(a)Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 5: Dynamic Curriculum Learning F1-Scores

complex ones later.

The Inverse Loss Task Weights strategy
achieved an F1-Score of 79.31 for the binary task
and an average F1-Score of 70.66 for multi tasks.
This strategy outperformed the Weighted Strategy,
which might be due to its adaptive capabilities. Un-
like the fixed weights used in the Weighted Strat-
egy, the Dynamic Weighted Strategy continuously
adjusts the task weights based on their losses deter-
mined during backpropagation. This helped the un-
derperforming tasks to instantaneously get higher
weights, potentially leading to more balanced and
efficient learning across all tasks. The adaptabil-
ity nature of this algorithm might have helped the
model optimize its training process, contributing to
the improved overall performance.

Similarly, the newly conceived Dynamic
Curriculum Learning and Dynamic Anti-
Curriculum Learning also showed superior per-
formance compared to their static counterparts.
Dynamic Curriculum Learning resulted in an F1-
Score of 77.56 for the binary task and an aver-
age F1-Score of 69.60 for multi-tasks. Dynamic
Anti-Curriculum Learning achieved an F1-Score of
78.38 for the binary task and an average F1-Score
of 70.96 for multi-tasks. The improvement can be

attributed to their ability to dynamically determine
the order of tasks for learning and dynamically ad-
just their weights. This adaptability allowed for a
more balanced and sensitive training process. This
ensured that the model effectively learned from a
variety of tasks, leading to enhanced overall perfor-
mance.

7 Conclusion

We evaluate a variety of dynamic training methods
to finetune the multitask HICCAP model on comic
mischief detection. We devise two simple exten-
sions of existing algorithms that yield improved
SOTA performance on comic mischief detection.
These are inverse task weighting, which weights
task specific losses through a simple and efficient
method, and dynamic curriculum learning, a simple
method of determining a curriculum for curriculum
learning via an initial assessment phase.

8 Future Work

We note that this is preliminary work and further
experiments must be done to draw more conclu-
sive results. First, we need to more clearly lay out
and compare experimental results and task specific
performance. This comparison is necessary to de-
termine how different tasks compare to their single
task model counterparts and to note trends in how
well different tasks train together. We must also
perform ablations to better analyze the performance
of different dynamic training methods and to under-
stand how changes in performance arise. We also
believe that our work can extend more generally
beyond the use case of comic mischief detection
and hope to evaluate our methods on wider classes
of models and on multitask benchmarks. Another
possible area for expansion would be to incorporate
auxiliary tasks into the training mix. We believe
that by training on adjacent tasks to comic mischief
detection, such as emotion recognition, we can
likely further push the comic mischief detection
SOTA. Introducing auxiliary tasks also introduces
important general technical challenges for dynamic
training methods that warrant further investigation.
We are also interested in further developing dy-
namic training methods that specifically take into
account the multimodal and finetuning assumptions
to achieve better performance.



Acknowledgments

We would like to thank Dr. Thamar Solorio and Dr.
Hugo Jair Escalante for their support and guidance
throughout this project. This work was done on site
at INAOE in Puebla, Mexico in partnership with
University of Houston as part of the International
Research Experience for Students (IRES) program.
This work was made possible by the support of the
National Science Foundation (NSF).

References
Elaheh Baharlouei, Mahsa Shafaei, Yigeng Zhang,

Hugo Jair Escalante, and Thamar Solorio. 2024. La-
beling comic mischief content in online videos with
a multimodal hierarchical-cross-attention model. In
Proceedings of the Language Resources and Evalu-
ation Conference (LREC). European Language Re-
sources Association (ELRA).

Y. Bengio, Jérôme Louradour, Ronan Collobert, and Ja-
son Weston. 2009. Curriculum learning. volume 60,
page 6.

Joao Carreira and Andrew Zisserman. 2018. Quo vadis,
action recognition? a new model and the kinetics
dataset. Preprint, arXiv:1705.07750.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. GradNorm: Gradi-
ent Normalization for Adaptive Loss Balancing
in Deep Multitask Networks. arXiv preprint.
ArXiv:1711.02257 [cs].

Michael Crawshaw. 2020. Multi-Task Learning with
Deep Neural Networks: A Survey. arXiv preprint.
ArXiv:2009.09796 [cs, stat].

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu,
Rohan Anil, and Chelsea Finn. 2021. Efficiently
Identifying Task Groupings for Multi-Task Learning.
arXiv preprint. ArXiv:2109.04617 [cs].

Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis,
Jort F. Gemmeke, Aren Jansen, R. Channing Moore,
Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron J. Weiss, and Kevin
Wilson. 2017. Cnn architectures for large-scale audio
classification. Preprint, arXiv:1609.09430.

Ronghang Hu and Amanpreet Singh. 2021. Unit: Mul-
timodal multitask learning with a unified transformer.
Preprint, arXiv:2102.10772.

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018.
Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. Preprint,
arXiv:1705.07115.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-Task
Vision and Language Representation Learning. arXiv
preprint. ArXiv:1912.02315 [cs].

AJ Piergiovanni, Weicheng Kuo, Wei Li, and Anelia
Angelova. 2023. Dynamic pretraining of vision-
language models.

RiTUAL-UH. 2024. Comic mischief predic-
tion. https://github.com/RiTUAL-UH/
Comic-Mischief-Prediction/tree/main.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and
Nicu Sebe. 2022. Curriculum learning: A survey.
Preprint, arXiv:2101.10382.

Trevor Standley, Amir R. Zamir, Dawn Chen, Leonidas
Guibas, Jitendra Malik, and Silvio Savarese. 2020.
Which tasks should be learned together in multi-task
learning? Preprint, arXiv:1905.07553.

Xin Wang, Yudong Chen, and Wenwu Zhu. 2021.
A survey on curriculum learning. Preprint,
arXiv:2010.13166.

Jun Yu, Yutong Dai, Xiaokang Liu, Jin Huang, Yis-
han Shen, Ke Zhang, Rong Zhou, Eashan Adhikarla,
Wenxuan Ye, Yixin Liu, Zhaoming Kong, Kai Zhang,
Yilong Yin, Vinod Namboodiri, Brian D. Davison,
Jason H. Moore, and Yong Chen. 2024. Unleash-
ing the Power of Multi-Task Learning: A Com-
prehensive Survey Spanning Traditional, Deep, and
Pretrained Foundation Model Eras. arXiv preprint.
ArXiv:2404.18961 [cs].

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey
Levine, Karol Hausman, and Chelsea Finn. 2020.
Gradient Surgery for Multi-Task Learning. arXiv
preprint. ArXiv:2001.06782 [cs, stat].

https://arxiv.org/abs/2406.07841
https://arxiv.org/abs/2406.07841
https://arxiv.org/abs/2406.07841
https://doi.org/10.1145/1553374.1553380
https://arxiv.org/abs/1705.07750
https://arxiv.org/abs/1705.07750
https://arxiv.org/abs/1705.07750
http://arxiv.org/abs/1711.02257
http://arxiv.org/abs/1711.02257
http://arxiv.org/abs/1711.02257
http://arxiv.org/abs/2009.09796
http://arxiv.org/abs/2009.09796
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.48550/arXiv.2109.04617
https://doi.org/10.48550/arXiv.2109.04617
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/1609.09430
https://arxiv.org/abs/2102.10772
https://arxiv.org/abs/2102.10772
https://arxiv.org/abs/1705.07115
https://arxiv.org/abs/1705.07115
http://arxiv.org/abs/1912.02315
http://arxiv.org/abs/1912.02315
https://openreview.net/forum?id=QcffIcjq8bl
https://openreview.net/forum?id=QcffIcjq8bl
https://github.com/RiTUAL-UH/Comic-Mischief-Prediction/tree/main
https://github.com/RiTUAL-UH/Comic-Mischief-Prediction/tree/main
https://arxiv.org/abs/2101.10382
https://arxiv.org/abs/1905.07553
https://arxiv.org/abs/1905.07553
https://arxiv.org/abs/2010.13166
http://arxiv.org/abs/2404.18961
http://arxiv.org/abs/2404.18961
http://arxiv.org/abs/2404.18961
http://arxiv.org/abs/2404.18961
https://doi.org/10.48550/arXiv.2001.06782


A Additional Experiments

Here we evaluate some methods not described in
the main paper. We leave these experiments to the
appendix as they are either tangential to the main
methods or yielded inconclusive results.

Figure 6: Never Look Back Training: Task-Specific F1
Scores

We evaluate Never Look Back Training where
we train each task for 4 epochs before moving onto
the next task. We define the order of training as
slapstick, gory, sarcasm, mature. We informally
define this ordering from easiest to hardest using
the final F1 scores reported in the original HICCAP
paper for both single task and multi task models
(the ordering agrees over both paradigms). Task
specific validation F1 scores are shown in Figure
6. We achieve the following test F1 scores: mature:
44.67, gory: 8.33, sarcasm: 47.04, slapstick: 0.00,
macro: 25.01. As expected, this is not a viable
strategy, with catastrophic forgetting being clearly
exhibited. Notably, some tasks are more affected
by catastrophic forgetting than others. For example,
F1 score over gory tasks, which is trained second,
only sees an initial performance drop from about
0.55 to 0.48 and then remains mostly stable after 8
epochs of training on other tasks. Meanwhile, F1
score over sarcasm, the first task, is about 0.6 after
its training period, and quickly drops to about 0.45
after only 4 epochs of training on gory. Further
work in understanding this phenomenon is an im-
portant line of future work in multi-task learning.

We evaluate Inverse Loss Difficulty Sampling
over 5 epochs and report validation F1-Score and
sampling weight histories in Figure 7. We achieve
the following test F1 scores: mature: 48.18, gory:
9.01, sarcasm: 32.7, slapstick: 24.7, macro: 28.67.
We note that despite using the same batch size
across experiments, each training step here utilizes
less data. Because each item in our dataset has

(a) Task-Specific F1 Scores

(b) Sampling Weights

Figure 7: Inverse Loss Difficulty Sampling

labels for every class, we generally accumulate the
losses for every task for each item of data. How-
ever, the nature of this method doesn’t allow for
this, instead forcing us to treat different labels for
the same input data as different points of training
data. We enforce a minimum of 2 data points per
task per batch and resample data every 20 itera-
tions. This is in contrast to the experimental setup
in the original paper, which enforces a minimum
of 4 data points per task per batch and resamples
every 100 iterations. We make these modifications
due to our lower batch size and running time. Like
the original paper, we do not weight task-specific
losses, but note that this is a possible area of im-
provemet within the algorithm. We find that de-
spite the positive trend, F1-Scores remain lower
than after training for the same number of epochs
using fixed loss weights. We also see that sampling
weights are highly volatile and do not notice clear
trends or major deviations from a uniform split.
Due to the lower number of training epochs and
discrepancies in how data is handled, these results
are inconclusive.

We evaluate GradNorm over 10 epochs and
report validation F1-Score and loss weight histo-



(a) Task-Specific F1 Scores

(b) Loss Weights

Figure 8: GradNorm

ries in Figure 8. We achieve the following test
F1 scores: mature: 51.11, gory: 6.04, sarcasm:
23.78, slapstick: 10.90, macro: 10.90. Mature,
gory, and sarcasm all freeze training after 1 epoch,
with gory exhibiting a decrease in performance
(though changes for mature and gory are marginal).
Slapstick exhibits no clear training pattern. We also
present the loss weight history, but there is no clear
connection between these weights and the results
given. We believe that these results are not reflec-
tive of the Gradnorm algorithm, but rather due to a
bug somewhere in the implementation.

B Additional F1-Scores for Fine-Tuning
Strategies

Here we include additional F1-Score histories for
methods discussed in Section 6.

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d)Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 9: Round-Robin F1-Scores

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 10: Dynamic Stop-and-Go F1-Scores



(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 11: Curriculum F1-Scores

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 12: Anti Curriculum F1-Scores

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 13: Dynamic Weights F1-Scores

(a) Binary Validation F1-Score (b) Mature Validation F1-Score

(c) Gory Validation F1-Score (d) Slapstick Validation F1-Score

(e) Sarcasm Validation F1-Score

Figure 14: Dynamic Anti Curriculum F1-Scores


	Introduction
	Comic Mischief Detection
	Dataset
	HICCAP Model
	Motivation

	Multi Task Learning
	Dynamic Training Methods
	One Task At A Time
	All Tasks At Once
	Defining Task Groupings
	Novel Methods

	Implementation
	Experiments
	Conclusion
	Future Work
	Additional Experiments
	Additional F1-Scores for Fine-Tuning Strategies

